Moving Average Dieses Beispiel lehrt Sie, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen können. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Gipfel und Täler) zu glätten, um Trends leicht zu erkennen. 1. Zuerst schauen wir uns unsere Zeitreihen an. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Kann die Schaltfläche Datenanalyse nicht finden Hier klicken, um das Analysis ToolPak-Add-In zu laden. 3. Wählen Sie Moving Average und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3. 8. Zeichnen Sie einen Graphen dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der bisherigen 5 Datenpunkte und der aktuelle Datenpunkt. Dadurch werden Gipfel und Täler geglättet. Die Grafik zeigt einen zunehmenden Trend. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da es nicht genügend vorherige Datenpunkte gibt. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Gipfel und Täler geglättet. Je kleiner das Intervall ist, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. Weighted Moving Averages: Die Grundlagen Im Laufe der Jahre haben Techniker zwei Probleme mit dem einfachen gleitenden Durchschnitt gefunden. Das erste Problem liegt im Zeitrahmen des gleitenden Mittelwertes (MA). Die meisten technischen Analysten glauben, dass Preisaktion. Der Eröffnungs - oder Schlussbestandspreis, ist nicht genug, auf die für die ordnungsgemäße Vorhersage des Kaufs oder der Verkaufssignale der MAs Crossover-Aktion abzusehen ist. Um dieses Problem zu lösen, weisen die Analysten nunmehr die aktuellsten Preisdaten mit dem exponentiell geglätteten gleitenden Durchschnitt (EMA) zu. (Erfahren Sie mehr bei der Erforschung der exponentiell gewogenen bewegten Durchschnitt.) Ein Beispiel Zum Beispiel, mit einem 10-Tage-MA, würde ein Analytiker den Schlusskurs des 10. Tages und multiplizieren diese Zahl um 10, der neunte Tag um neun, der achte Tag für acht und so weiter zum ersten der MA. Sobald die Summe bestimmt worden ist, würde der Analytiker dann die Zahl durch die Addition der Multiplikatoren teilen. Wenn Sie die Multiplikatoren des 10-Tage-MA-Beispiels hinzufügen, ist die Zahl 55. Dieser Indikator wird als linear gewichteter gleitender Durchschnitt bezeichnet. (Für verwandte Lesung, check out Simple Moving Averages machen Trends Stand out.) Viele Techniker sind festgläubig in der exponentiell geglätteten gleitenden Durchschnitt (EMA). Dieser Indikator wurde in so vielen verschiedenen Weisen erklärt, dass er Studenten und Investoren gleichermaßen verwechselt. Vielleicht kommt die beste Erklärung von John J. Murphys Technische Analyse der Finanzmärkte, (veröffentlicht vom New York Institute of Finance, 1999): Der exponentiell geglättete gleitende Durchschnitt adressiert beide Probleme, die mit dem einfachen gleitenden Durchschnitt verbunden sind. Zuerst weist der exponentiell geglättete Durchschnitt den neueren Daten ein größeres Gewicht zu. Daher ist es ein gewichteter gleitender Durchschnitt. Aber während es den vergangenen Preisdaten eine geringere Bedeutung zuweist, enthält es in der Berechnung alle Daten im Leben des Instruments. Darüber hinaus ist der Benutzer in der Lage, die Gewichtung anpassen, um mehr oder weniger Gewicht auf die jüngsten Tage Preis, die zu einem Prozentsatz der vorherigen Tage Wert hinzugefügt wird. Die Summe der beiden Prozentwerte addiert sich zu 100. Beispielsweise könnte dem letzten Tagepreis ein Gewicht von 10 (.10) zugewiesen werden, der zu den vorherigen Tagen Gewicht von 90 (.90) hinzugefügt wird. Dies gibt den letzten Tag 10 der Gesamtgewichtung. Dies wäre das Äquivalent zu einem 20-Tage-Durchschnitt, indem man den letzten Tage Preis einen kleineren Wert von 5 (.05). Abbildung 1: Exponentiell geglättete Moving Average Die obige Grafik zeigt den Nasdaq Composite Index von der ersten Woche im August 2000 bis zum 1. Juni 2001. Wie Sie deutlich sehen können, ist die EMA, die in diesem Fall die Schlusskursdaten über einen Neun-Tage-Periode, hat definitive Verkaufssignale am 8. September (gekennzeichnet durch einen schwarzen Pfeil nach unten). Dies war der Tag, an dem der Index unter dem Niveau von 4.000 unterging. Der zweite schwarze Pfeil zeigt ein weiteres heruntergekommenes Bein, das die Techniker eigentlich erwarten. Die Nasdaq konnte nicht genug Volumen und Interesse von den Einzelhandelsanlegern erzeugen, um die 3.000 Mark zu brechen. Dann tauchte es wieder auf den Boden bei 1619.58 am 4. April. Der Aufwärtstrend vom 12. April ist durch einen Pfeil markiert. Hier schloss der Index um 1.961.46, und Techniker begannen, institutionelle Fondsmanager zu sehen, die anfangen, einige Schnäppchen wie Cisco, Microsoft und einige der energiebezogenen Fragen aufzuheben. (Lesen Sie unsere verwandten Artikel: Moving Average Envelopes: Verfeinerung eines beliebten Trading-Tool und Moving Average Bounce.) Beta ist ein Maß für die Volatilität oder systematische Risiko eines Wertpapiers oder eines Portfolios im Vergleich zum Markt als Ganzes. Eine Art von Steuern, die auf Kapitalgewinne von Einzelpersonen und Kapitalgesellschaften angefallen sind. Kapitalgewinne sind die Gewinne, die ein Investor ist. Ein Auftrag, eine Sicherheit bei oder unter einem bestimmten Preis zu erwerben. Ein Kauflimitauftrag erlaubt es Händlern und Anlegern zu spezifizieren. Eine IRS-Regel (Internal Revenue Service), die strafrechtliche Abhebungen von einem IRA-Konto ermöglicht. Die Regel verlangt das. Der erste Verkauf von Aktien von einem privaten Unternehmen an die Öffentlichkeit. IPOs werden oft von kleineren, jüngeren Unternehmen ausgesucht. DebtEquity Ratio ist Schuldenquote, die verwendet wird, um ein Unternehmen zu finanzieren. Finanzielle Hebelwirkung oder eine Schuldenquote, die zur Messung eines Individuums verwendet wird.8.4 Verschieben von durchschnittlichen Modellen Anstatt die bisherigen Werte der Prognosemenge in einer Regression zu verwenden, verwendet ein gleitendes Durchschnittsmodell vergangene Prognosefehler in einer Regression - ähnliches Modell. Y c et theta e theta e dots theta e, wo et ist weißes Rauschen. Wir bezeichnen dies als MA (q) Modell. Natürlich beobachten wir nicht die Werte von et, also ist es nicht wirklich Regression im üblichen Sinne. Beachten Sie, dass jeder Wert von yt als ein gewichteter gleitender Durchschnitt der letzten Prognosefehler gedacht werden kann. Allerdings sollten die gleitenden durchschnittlichen Modelle nicht mit der gleitenden durchschnittlichen Glättung verwechselt werden, die wir in Kapitel 6 besprochen haben. Ein gleitendes Durchschnittsmodell wird für die Prognose zukünftiger Werte verwendet, während die durchschnittliche Glättung für die Schätzung des Trendzyklus vergangener Werte verwendet wird. Abbildung 8.6: Zwei Beispiele von Daten aus bewegten Durchschnittsmodellen mit unterschiedlichen Parametern. Links: MA (1) mit y t 20e t 0.8e t-1. Rechts: MA (2) mit y t e t - e t-1 0.8e t-2. In beiden Fällen ist e t normal verteilt weißes Rauschen mit mittlerem Null und Varianz eins. Abbildung 8.6 zeigt einige Daten aus einem MA (1) Modell und einem MA (2) Modell. Das Ändern der Parameter theta1, punkte, thetaq führt zu unterschiedlichen zeitreihenmustern. Wie bei autoregressiven Modellen wird die Varianz des Fehlerbegriffs nur den Maßstab der Serie ändern, nicht die Muster. Es ist möglich, jedes stationäre AR (p) Modell als MA (Infty) Modell zu schreiben. Zum Beispiel können wir mit wiederholter Substitution dies für ein AR (1) - Modell nachweisen: begin yt amp phi1y et amp phi1 (phi1y e) et amp phi12y phi1 e et amph phi13y phi12e phi1 e et amptext endgesetzt -1 lt phi1 lt 1, der Wert von phi1k wird kleiner, wenn k größer wird. So erhalten wir schließlich yt et phi1 e phi12 e phi13 e cdots, ein MA (infty) Prozess. Das umgekehrte Ergebnis gilt, wenn wir den MA-Parametern einige Einschränkungen auferlegen. Dann heißt das MA-Modell invertierbar. Das heißt, dass wir einen invertierbaren MA (q) Prozess als AR (Infty) Prozess schreiben können. Invertible Modelle sind nicht einfach, damit wir von MA Modellen in AR Modelle umwandeln können. Sie haben auch einige mathematische Eigenschaften, die sie in der Praxis leichter machen können. Die Invertierbarkeitsbeschränkungen ähneln den stationären Einschränkungen. Für ein MA (1) Modell: -1lttheta1lt1. Für ein MA (2) Modell: -1ltθ2lt1, theta2theta1 gt-1, theta1 - θ2 lt 1. Kompliziertere Bedingungen gelten für qge3. Auch hier wird R diese Einschränkungen bei der Schätzung der Modelle berücksichtigen.2.1 Moving Average Models (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und gleitende durchschnittliche Begriffe enthalten. In Woche 1 lernten wir einen autoregressiven Begriff in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Zum Beispiel ist ein lag 1 autoregressiver Term x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende durchschnittliche Begriffe. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Lassen Sie (nt N (0, sigma2w)), was bedeutet, dass die wt identisch, unabhängig verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das mit MA (1) bezeichnete 1-stufige gleitende Durchschnittsmodell ist (xt mu wt theta1w) Das durchschnittliche Modell der 2. Ordnung, das mit MA (2) bezeichnet wird, ist (xt mu wt theta1w theta2w) , Bezeichnet mit MA (q) ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Bedingungen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (unsquared) Terme in Formeln für ACFs und Abweichungen klappt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Zeichen verwendet wurden, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Zeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Beispiel ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) Modell. Für interessierte Schüler sind die Beweise dieser Eigenschaften ein Anhang zu diesem Handzettel. Beispiel 1 Angenommen, ein MA (1) - Modell ist x t 10 wt .7 w t-1. Wo (wt Overset N (0,1)). So ist der Koeffizient 1 0,7. Die theoretische ACF ist gegeben durch eine Handlung dieses ACF folgt. Die gerade dargestellte Handlung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis wird eine Probe gewöhnlich ein solches klares Muster liefern. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1). Für diese Simulation folgt eine Zeitreihenfolge der Stichprobendaten. Wir können nicht viel von dieser Handlung erzählen. Die Stichprobe ACF für die simulierten Daten folgt. Wir sehen eine Spike bei Verzögerung 1, gefolgt von allgemein nicht signifikanten Werten für die Vergangenheit 1. Beachten Sie, dass die Stichprobe ACF nicht mit dem theoretischen Muster des zugrundeliegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sind Eine andere Probe hätte eine etwas andere Probe ACF, die unten gezeigt wird, würde aber wahrscheinlich die gleichen breiten Merkmale haben. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) Modell Für das MA (2) Modell sind die theoretischen Eigenschaften die folgenden: Beachten Sie, dass die einzigen Werte ungleich Null im theoretischen ACF für die Verzögerungen 1 und 2 sind. Autokorrelationen für höhere Verzögerungen sind 0 So gibt ein Beispiel ACF mit signifikanten Autokorrelationen bei den Verzögerungen 1 und 2, aber nicht signifikante Autokorrelationen für höhere Verzögerungen ein mögliches MA (2) - Modell an. Iid N (0,1). Die Koeffizienten sind 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, hat die theoretische ACF nur Nullwerte nur bei den Verzögerungen 1 und 2. Werte der beiden Nicht-Null-Autokorrelationen sind eine Auftragung der theoretischen ACF folgt. Wie fast immer der Fall ist, verhalten sich die Probendaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Probenwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wo w t iid N (0,1). Die Zeitreihenfolge der Daten folgt. Wie bei der Zeitreihen-Plot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Stichprobe ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei den Verzögerungen 1 und 2, gefolgt von nicht signifikanten Werten für andere Verzögerungen. Beachten Sie, dass die Stichprobe ACF aufgrund des Stichprobenfehlers nicht genau mit dem theoretischen Muster übereinstimmt. ACF für allgemeine MA (q) Modelle Eine Eigenschaft von MA (q) - Modellen im Allgemeinen ist, dass es für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q ungleichen Autokorrelationen gibt. Nicht-Eindeutigkeit der Verbindung zwischen den Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) Modell, für jeden Wert von 1. Die reziproke 1 1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0,5 für 1. Und dann 1 (0,5) 2 für 1 verwenden. Youll bekommen (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung zu erfüllen, die Invertierbarkeit genannt wird. Wir beschränken die MA (1) - Modelle auf Werte mit einem absoluten Wert kleiner als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, wohingegen 1 10,5 2 nicht. Invertierbarkeit von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch konvergieren, verstehen wir, dass die AR-Koeffizienten auf 0 abnehmen, wenn wir uns in der Zeit zurückziehen. Invertierbarkeit ist eine Beschränkung, die in die Zeitreihen-Software programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Terme abzuschätzen. Es ist nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertierbarkeitsbeschränkung für MA (1) Modelle finden Sie im Anhang. Fortgeschrittene Theorie Hinweis. Für ein MA (q) Modell mit einem bestimmten ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten Werte haben, so daß die Gleichung 1- 1 y - ist. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 haben wir die theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1 Und dann simuliert n 150 Werte aus diesem Modell und plotted die Probe Zeitreihen und die Probe ACF für die simulierten Daten. Die R-Befehle, die verwendet wurden, um das theoretische ACF zu zeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens Lags, die von 0 bis 10 reicht (1) mit theta1 0,7) abline (h0) fügt eine horizontale Achse zum Plot hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Benannte acfma1 (unsere auswahl des namens). Der Plotbefehl (der 3. Befehl) zeichnet sich gegen die ACF-Werte für die Verzögerungen 1 bis 10 aus. Der ylab-Parameter markiert die y-Achse und der Hauptparameter setzt einen Titel auf den Plot. Um die numerischen Werte des ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und die Plots wurden mit den folgenden Befehlen durchgeführt. Xcarima. sim (n150, list (mac (0.7))) simuliert n 150 Werte aus MA (1) xxc10 fügt 10 hinzu, um Mittel zu machen 10. Simulation standardmäßig 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurden die theoretischen ACF des Modells xt 10 Gew .-% w t-1 .3 w t-2 aufgetragen. Und dann simuliert n 150 Werte aus diesem Modell und plotted die Probe Zeitreihen und die Probe ACF für die simulierten Daten. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 plot (Verzögerungen, acfma2, xlimc (1,10), ylabr, typeh, Haupt-ACF für MA (2) mit theta1 0,5, Thex20.3) abline (h0) xcarima. sim (n150, list (mac (0.5, 0.3))) xxc10 plot (x, typeb, main simulierte MA (2) Serie) acf (x, xlimc (1,10), MainACF für simulierte MA (2) Daten) Anhang: Nachweis der Eigenschaften von MA (1) Für interessierte Studierende sind hier Beispiele für theoretische Eigenschaften des MA (1) Modells. Abweichung: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1, der vorherige Ausdruck 1 w 2. Für irgendwelche h 2 ist der vorherige Ausdruck 0 Der Grund dafür ist, dass durch die Definition der Unabhängigkeit der Gew. E (w k w j) 0 für jedes k j Da ferner wt den Mittelwert 0, E (w j w j) E (w j 2) w 2 hat. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um das oben angegebene ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als ein unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so dass die AR-Koeffizienten zu 0 konvergieren, wenn wir uns unendlich zurück in der Zeit bewegen. Nun zeigen Sie die Invertierbarkeit für das Modell MA (1). Dann ersetzen wir die Beziehung (2) für w t-1 in Gleichung (1) (3) (zt wt theta1 (z - θaw) wt theta1z - θ2w) Zur Zeit t-2. Gleichung (2) wird wir dann die Beziehung (4) für wt-2 in Gleichung (3) (zt wt theta1z-tha21w wt theta1z - tha21 (z-tha1w) wt theta1z - θ12z theta31w) Wenn wir fortfahren würden ( Unendlich), würden wir die unendliche Ordnung AR-Modell erhalten (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z multiplizieren, in der Größe zunehmen wird (unendlich), wenn wir uns zurück bewegen Zeit. Um dies zu verhindern, brauchen wir 1 lt1. Dies ist die Voraussetzung für ein invertierbares MA (1) Modell. Infinite Order MA Modell In Woche 3 sehen wir, dass ein AR (1) Modell in eine unendliche Reihenfolge umgewandelt werden kann MA Modell: (xt-mu wt phi1w phi21w punkte phik1 w Punkte Summe phij1w) Diese Summierung von vergangenen weißen Rauschen ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Voraussetzung für eine stationäre AR (1) ist, dass 1 lt1. Lets berechnen die Var (x t) mit der Kausaldarstellung. Dieser letzte Schritt verwendet eine grundlegende Tatsache über geometrische Reihen, die (Phi1lt1) ansonsten die Reihe divergiert. Navigation
No comments:
Post a Comment